6 resultados para protein function

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Helicobacter pylori is a gastric pathogen which infects ~50% of the global population and can lead to the development of gastritis, gastric and duodenal ulcers and carcinoma. Genome sequencing of H. pylori revealed high levels of genetic variability; this pathogen is known for its adaptability due to mechanisms including phase variation, recombination and horizontal gene transfer. Motility is essential for efficient colonisation by H. pylori. The flagellum is a complex nanomachine which has been studied in detail in E. coli and Salmonella. In H. pylori, key differences have been identified in the regulation of flagellum biogenesis, warranting further investigation. In this study, the genomes of two H. pylori strains (CCUG 17874 and P79) were sequenced and published as draft genome sequences. Comparative studies identified the potential role of restriction modification systems and the comB locus in transformation efficiency differences between these strains. Core genome analysis of 43 H. pylori strains including 17874 and P79 defined a more refined core genome for the species than previously published. Comparative analysis of the genome sequences of strains isolated from individuals suffering from H. pylori related diseases resulted in the identification of “disease-specific” genes. Structure-function analysis of the essential motility protein HP0958 was performed to elucidate its role during flagellum assembly in H. pylori. The previously reported HP0958-FliH interaction could not be substantiated in this study and appears to be a false positive. Site-directed mutagenesis confirmed that the coiled-coil domain of HP0958 is involved in the interaction with RpoN (74-284), while the Zn-finger domain is required for direct interaction with the full length flaA mRNA transcript. Complementation of a non-motile hp0958-null derivative strain of P79 with site-directed mutant alleles of hp0958 resulted in cells producing flagellar-type extrusions from non-polar positions. Thus, HP0958 may have a novel function in spatial localisation of flagella in H. pylori

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aberrant regulation of the Wnt signalling pathway is a recurrent theme in cancer biology. Hyper activation due to oncogenic mutations and paracrine activity has been found in both colon cancer and breast cancer, and continues to evolve as a central mechanism in oncogenesis. PDLIM2, a cytoskeletal PDZ protein, is an IGF-1 regulated gene that is highly expressed in cancer cell lines derived from metastatic tumours. Suppression of PDLIM2 inhibits polarized cell migration, reverses the Epithelial to Mesenchymal transition (EMT) phenotype, suppresses the transcription of β-catenin target genes, and regulates gene expression of key transcription factors in EMT. This thesis investigates the mechanism by which PDLIM2 contributes to the maintenance of Wnt signalling in cancer cells. Here we show that PDLIM2 is a critical regulator of the Wnt pathway by regulating β-catenin at the adherens juctions, as also its transcriptional activity by the interaction of PDLIM2 with TCF4 at the nucleus. Evaluation of PDLIM2 in macrophages and co-culture studies with cancer cells and fibroblasts showed the influence exerted on PDLIM2 by paracrine cues. Thus, PDLIM2 integrates cytoskeleton signalling with gene expression by modulating the Wnt signalling pathway and reconciling microenvironmental cues with signals in epithelial cells. Negative correlation of mRNA and protein levels in the triple negative breast cancer cell BT549 suggests that PDLIM2 is part of a more complex mechanism that involves transcription and posttranslational modifications. GST pulldown studies and subsequent mass spectrometry analysis showed that PDLIM2 interacts with 300 proteins, with a high biological function in protein biosynthesis and Ubiquitin/proteasome pathways, including 13 E3 ligases. Overall, these data suggest that PDLIM2 has two distinct functions depending of its location. Located at the cytoplasm mediates cytoskeletal re-arrangements, whereas at the nucleus PDLIM2 acts as a signal transduction adaptor protein mediating transcription and ubiquitination of key transcription factors in cancer development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lnx1 (Ligand of Numb protein X 1) and Lnx2 genes belong to a family of PDZ domain-containing RING finger domain E3 ubiquitin ligases. mRNA expression for both genes have been reported in early murine central nervous system. However, there have been limited reports with regards to the expression patterns for both the proteins in vivo. Hence, we have attempted to characterize the significance of these proteins in the context of morphology and physiology of the central nervous system. Through our studies, we have attempted to examine closely the expression of these two genes in the murine central nervous system. We have also looked at novel interacting ligands for both proteins. Interacting partners have been examined with particular relevance to possible roles of their interactions with LNX1 and LNX2 in the functioning of the nervous system. Moreover, we have performed loss-of-function studies by way of creation and characterization of knockout mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pregnancy-specific glycoproteins (PSGs) are highly glycosylated secreted proteins encoded by multi-gene families in some placental mammals. They are carcinoembryonic antigen (CEA) family and immunoglobulin (Ig) superfamily members. PSGs are immunomodulatory, and have been demonstrated to possess antiplatelet and pro-angiogenic properties. Low serum levels of these proteins have been correlated with adverse pregnancy outcomes. Objectives: Main research goals of this thesis were: 1). To attempt to replicate previously reported cytokine responses to PSG-treatment of immune cells and subsequently to investigate functionally important amino acids within PSG1. 2). To determine whether candidate receptor, integrin αvβ3, was a binding partner for PSG1 and to investigate whether PSG1 possessed functionality in a leukocyte-endothelial interaction assay. 3). To determine whether proteins generated from recently identified putative PSG genes in the horse shared functional properties with PSGs from other species. Outcomes: 1). Sequential domain deletion of PSG1 as well as mutation of conserved residues within the PSG1 Ndomain did not affect PSG1-induced TGF-β1. The investigated response was subsequently found to be the result of latent TGF-β1 contaminating the recombinant protein. Protein further purified by SEC to remove this showed no induction of TGF-β1. The most N-terminal glycosylation site was demonstrated to have an important role in PSG N domain secretion. PSG1 attenuated LPS-induced IL-6 and TNF-α. Investigations into signalling underpinning this proved inconclusive. 2). Integrin αvβ3 was identified as a novel PSG1 receptor mediating an as yet unknown function. Preliminary investigations into a role for PSGs as inhibitors of leukocyte endothelial interactions showed no effect by PSG1. 3). Horse PSG protein, CEACAM49, was shown to be similarly contaminated by latent TGF-β1 particle and once removed did not demonstrate TGF-β1 release. Interestingly horse PSG did show anti-platelet properties through inhibition of the plateletfibrinogen interaction as previously published for mouse and human PSGs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oesophageal cancer is an aggressive malignancy which is resistant to conventional therapy and has a poor prognosis. A greater understanding of the underlying molecular biology of oesophageal cancer and the identification of novel targets is necessary for the future treatment of this disease. This thesis focuses specifically on the ill-defined and understudied p38δ mitogen-activated protein kinase (MAPK) and its function(s) in oesophageal squamous cell carcinoma (OESCC). In contrast to the three other p38 isoforms (p38α, -β and –γ which have to-date been relatively well-studied), p38δ MAPK signalling is poorly understood. Thus, this research elucidates some of the role(s) played by p38δ MAPK in cancer progression. This work outlines how loss of p38δ MAPK expression confers greater tumourigenicity in oesophageal cancer. Restoration of p38δ MAPK expression, however, has anti-proliferative and anti-migratory effects and decreases OESCC capacity for anchorageindependent growth. Using a novel application of an enzyme-substrate fusion approach, the effect of phosphorylated p38δ (p-p38δ) MAPK expression is also considered. The work goes onto describe the effect(s) of p38δ MAPK status on the chemosensitivity of OESCC to conventional cisplatin and 5-fluorouracil (CF) versus the effectiveness of doxorubicin, cisplatin and 5-fluorouracil (ACF). ACF treatment of p38δ MAPK-negative OESCC results in decreased proliferation, migration and recovery, and increased apoptosis when compared with CF treatment. This thesis examines the potential mechanisms by which p38δ MAPK expression is lost in OESCC and identifies epigenetic regulation as the probable cause of differential p38δ MAPK expression. Also analysed is the role p38δ MAPK and p-p38δ MAPK play in the cell cycle. In summary, this research identifies p38δ MAPK as a possible molecular target and a potential predictor of response to chemotherapy in OESCC patients.